WeChat:chinafreezer

HOME   >   News & Events  >  News List

Key Steps on Blast chilling room and Spital freezer

10/11/2012

 

In food cooling process field, according to the Assessment of the Market for Compressed Air Efficiency Services issued by the U.S. Department of Energy, compressed air accounts for 10 percent of all electricity use in U.S. manufacturing. Even within the most efficient compressed air systems, only 10 to 15 percent of the input energy is ultimately delivered as compressed air. When leaks, inefficient design and inappropriate uses are included in the equation, energy waste becomes astounding; estimates indicate that poorly designed and maintained compressed air systems in the United States account for up to $3.2 billion in wasted energy usage annually.

 

Thankfully, there are simple steps managers can take to save their facility significant money. The first step is a compressed air audit. A careful examination of a facility’s compressed air system will likely reveal several opportunities for reducing the plant’s energy draw, resulting in significant energy savings, lower operating costs and a minimized impact on the environment through a smaller carbon footprint.

 

The next step for managers is understanding the production and usage of compressed air. The largest component of wasted energy in the process of manufacturing compressed air is heat loss. Heat recovery is an option offered now with most compressed air packages and recovery of around 90 percent of the input electrical energy is often the norm and far from the exception. Leaks feed artificial demand and turning up the pressure to compensate for the pressure loss only results in feeding more air to the leaks. Depending on pressure requirements and energy costs, a single ¼-inch leak in a compressed air line can cost a facility from $2,500 to more than $8,000 per year. Locating and fixing leaks throughout a facility’s compressed air system will result in significant savings.

 

Additional savings can be attained through proper system management and maintenance, and using the latest technological advancements. For instance, taking advantage of variable speed drive technology, which matches the production of compressed air to the actual demand, can reduce costs by around 35 percent. Plant managers should also look at inappropriate uses of compressed air; for example, applications where a low pressure blower might be better suited to an application than a compressor.